The Coronavirus, not the beer

All people cough and sneeze. Plenty spit when they talk.

Added bonus in the south...the smiles are so much better looking now!

And those that are asymptomatic have small viral loads so the concentration of particles is small. So the two or three random sneezes basically have no impact on the spread.
 
And those that are asymptomatic have small viral loads so the concentration of particles is small. So the two or three random sneezes basically have no impact on the spread.

Chu: In order to answer this, it’s first important to understand the concept of source control. We’ve learned that as many as 40% of people infected with the virus that causes COVID-19 may have no symptoms. But when they talk, cough or sneeze, they can still spread the virus to others in the form of respiratory droplets expelled into the air. Those droplets evaporate into fine particles that may linger. The mask traps these larger droplets before they can evaporate. So, wearing a mask regularly can prevent spreading at the source even when we don’t know we are sick. But masks are just one important way to prevent this disease from spreading. Washing your hands regularly and thoroughly and keeping at least 6 feet apart from one another are still vitally important.

http://med.stanford.edu/news/all-new...uidelines.html
 
And those that are asymptomatic have small viral loads so the concentration of particles is small. So the two or three random sneezes basically have no impact on the spread.

Okay. So you know how numbers work, and we are dealing with a large amount of people. Basically no impact on a small scale becomes an issue when we are talking about millions of people. Even if masks only prevented 1% of cases, we would be talking about almost 600,000 cases.
 
Here are just a few -

Moghadas SM, Fitzpatrick MC, Sah P, et al. The implications of silent transmission for the control of COVID-19 outbreaks. Proc Natl Acad Sci U S A. 2020;117(30):17513-17515.10.1073/pnas.2008373117. https://www.ncbi.nlm.nih.gov/pubmed/32632012external icon.
Johansson MA, Quandelacy TM, Kada S, et al. Controlling COVID-19 requires preventing SARS-CoV-2 transmission from people without symptoms. submitted. 2020.
Lindsley WG, Blachere FM, Law BF, Beezhold DH, Noti JD. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. medRxiv. 2020. https://doi.org/10.1101/2020.10.05.20207241external icon.
Fischer EP, Fischer MC, Grass D, Henrion I, Warren WS, Westman E. Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Sci Adv. 2020;6(36).10.1126/sciadv.abd3083. https://www.ncbi.nlm.nih.gov/pubmed/32917603external icon.
Verma S, Dhanak M, Frankenfield J. Visualizing the effectiveness of face masks in obstructing respiratory jets. Phys Fluids (1994). 2020;32(6):061708.10.1063/5.0016018. https://www.ncbi.nlm.nih.gov/pubmed/32624649external icon.
Bahl P, Bhattacharjee S, de Silva C, Chughtai AA, Doolan C, MacIntyre CR. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study. Thorax. 2020;75(11):1024-1025.10.1136/thoraxjnl-2020-215748. https://www.ncbi.nlm.nih.gov/pubmed/32709611external icon.
Davies A, Thompson KA, Giri K, Kafatos G, Walker J, Bennett A. Testing the efficacy of homemade masks: would they protect in an influenza pandemic? Disaster Med Public Health Prep. 2013;7(4):413-418.10.1017/dmp.2013.43. https://www.ncbi.nlm.nih.gov/pubmed/24229526external icon.
Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine. 2020;26(5):676-680.https://dx.doi.org/10.1038/s41591-020-0843-2external icon.
Bandiera L., Pavar G., Pisetta G., et al. Face coverings and respiratory tract droplet dispersion. medRxiv. 2020.10.1101/2020.08.11.20145086. https://doi.org/10.1101/2020.08.11.20145086external icon.
Alsved M, Matamis A, Bohlin R, et al. Exhaled respiratory particles during singing and talking. Aerosol Sci Technol. 2020.10.1080/02786826.2020.1812502.
Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol emission and superemission during human speech increase with voice loudness. Sci Rep. 2019;9(1):2348.10.1038/s41598-019-38808-z. https://www.ncbi.nlm.nih.gov/pubmed/30787335external icon.
Morawska L., Johnson GR, Ristovski ZD, et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Aerosol Sci. 2009;40(3):256-269. https://www.sciencedirect.com/science/article/pii/S0021850208002036external icon.
Abkarian M, Mendez S, Xue N, Yang F, Stone HA. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc Natl Acad Sci U S A. 2020;117(41):25237-25245.10.1073/pnas.2012156117. https://www.ncbi.nlm.nih.gov/pubmed/32978297external icon.
Ueki H, Furusawa Y, Iwatsuki-Horimoto K, et al. Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2. mSphere. 2020;5(5).10.1128/mSphere.00637-20. https://www.ncbi.nlm.nih.gov/pubmed/33087517external icon.
Rodriguez-Palacios A, Cominelli F, Basson AR, Pizarro TT, Ilic S. Textile Masks and Surface Covers-A Spray Simulation Method and a “Universal Droplet Reduction Model” Against Respiratory Pandemics. Front Med (Lausanne). 2020;7:260.10.3389/fmed.2020.00260. https://www.ncbi.nlm.nih.gov/pubmed/32574342external icon.
Viola I.M., Peterson B., Pisetta G., et al. Face coverings, aerosol dispersion and mitigation of virus transmission risk. 2020. https://arxiv.org/abs/2005.10720external icon.
Rengasamy S, Eimer B, Shaffer RE. Simple respiratory protection–evaluation of the filtration performance of cloth masks and common fabric materials against 20-1000 nm size particles. Ann Occup Hyg. 2010;54(7):789-798.10.1093/annhyg/meq044. https://www.ncbi.nlm.nih.gov/pubmed/20584862external icon.
Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano. 2020;14(5):6339-6347.10.1021/acsnano.0c03252. https://www.ncbi.nlm.nih.gov/pubmed/32329337external icon.
Long KD, Woodburn EV, Berg IC, Chen V, Scott WS. Measurement of filtration efficiencies of healthcare and consumer materials using modified respirator fit tester setup. PLoS One. 2020;15(10):e0240499.10.1371/journal.pone.0240499. https://www.ncbi.nlm.nih.gov/pubmed/33048980external icon.
O’Kelly E, Pirog S, Ward J, Clarkson PJ. Ability of fabric face mask materials to filter ultrafine particles at coughing velocity. BMJ Open. 2020;10(9):e039424.10.1136/bmjopen-2020-039424. https://www.ncbi.nlm.nih.gov/pubmed/32963071external icon.
Aydin O, Emon B, Cheng S, Hong L, Chamorro LP, Saif MTA. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mech Lett. 2020;40:100924.10.1016/j.eml.2020.100924. https://www.ncbi.nlm.nih.gov/pubmed/32835043external icon.
Bhattacharjee S, Bahl P, Chughtai AA, MacIntyre CR. Last-resort strategies during mask shortages: optimal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandemic. BMJ Open Respir Res. 2020;7(1).10.1136/bmjresp-2020-000698. https://www.ncbi.nlm.nih.gov/pubmed/32913005external icon.
Maurer L, Peris D, Kerl J, Guenther F, Koehler D, Dellweg D. Community Masks During the SARS-CoV-2 Pandemic: Filtration Efficacy and Air Resistance. J Aerosol Med Pulm Drug Deliv. 2020.10.1089/jamp.2020.1635. https://www.ncbi.nlm.nih.gov/pubmed/32975460external icon.
Hill WC, Hull MS, MacCuspie RI. Testing of Commercial Masks and Respirators and Cotton Mask Insert Materials using SARS-CoV-2 Virion-Sized Particulates: Comparison of Ideal Aerosol Filtration Efficiency versus Fitted Filtration Efficiency. Nano Lett. 2020;20(10):7642-7647.10.1021/acs.nanolett.0c03182. https://www.ncbi.nlm.nih.gov/pubmed/32986441external icon.
Whiley H, Keerthirathne TP, Nisar MA, White MAF, Ross KE. Viral Filtration Efficiency of Fabric Masks Compared with Surgical and N95 Masks. Pathogens. 2020;9(9).10.3390/pathogens9090762. https://www.ncbi.nlm.nih.gov/pubmed/32957638external icon.
Hao W, Parasch A, Williams S, et al. Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators. Int J Hyg Environ Health. 2020;229:113582.10.1016/j.ijheh.2020.113582. https://www.ncbi.nlm.nih.gov/pubmed/32917368external icon.
van der Sande M, Teunis P, Sabel R. Professional and home-made face masks reduce exposure to respiratory infections among the general population. PLoS One. 2008;3(7):e2618.10.1371/journal.pone.0002618. https://www.ncbi.nlm.nih.gov/pubmed/18612429external icon.
Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020.10.1016/S0140-6736(20)31142-9. https://doi.org/10.1016/S0140-6736(20)31142-9external icon.
Clase CM, Fu EL, Ashur A, et al. Forgotten Technology in the COVID-19 Pandemic: Filtration Properties of Cloth and Cloth Masks-A Narrative Review. Mayo Clin Proc. 2020;95(10):2204-2224.10.1016/j.mayocp.2020.07.020. https://www.ncbi.nlm.nih.gov/pubmed/33012350external icon.
Zhao M, Liao L, Xiao W, et al. Household Materials Selection for Homemade Cloth Face Coverings and Their Filtration Efficiency Enhancement with Triboelectric Charging. Nano Lett. 2020;20(7):5544-5552.10.1021/acs.nanolett.0c02211. https://www.ncbi.nlm.nih.gov/pubmed/32484683external icon.
Parlin AF, Stratton SM, Culley TM, Guerra PA. A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic. PLoS One. 2020;15(9):e0239531.10.1371/journal.pone.0239531. https://www.ncbi.nlm.nih.gov/pubmed/32946526external icon.
Hendrix MJ, Walde C, Findley K, Trotman R. Absence of Apparent Transmission of SARS-CoV-2 from Two Stylists After Exposure at a Hair Salon with a Universal Face Covering Policy – Springfield, Missouri, May 2020. MMWR Morb Mortal Wkly Rep. 2020;69(28):930-932.10.15585/mmwr.mm6928e2. https://www.ncbi.nlm.nih.gov/pubmed/32673300external icon.
Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Health. 2020;5(5).10.1136/bmjgh-2020-002794. https://www.ncbi.nlm.nih.gov/pubmed/32467353external icon.
Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, et al. Case-Control Study of Use of Personal Protective Measures and Risk for Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Thailand. Emerg Infect Dis. 2020;26(11).10.3201/eid2611.203003. https://www.ncbi.nlm.nih.gov/pubmed/32931726external icon.
Payne DC, Smith-Jeffcoat SE, Nowak G, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members – USS Theodore Roosevelt, April 2020. MMWR Morb Mortal Wkly Rep. 2020;69(23):714-721.10.15585/mmwr.mm6923e4. https://www.ncbi.nlm.nih.gov/pubmed/32525850external icon.
Schwartz KL, Murti M, Finkelstein M, et al. Lack of COVID-19 transmission on an international flight. Cmaj. 2020;192(15):E410.10.1503/cmaj.75015. https://www.ncbi.nlm.nih.gov/pubmed/32392504external icon.
Freedman DO, Wilder-Smith A. In-flight Transmission of SARS-CoV-2: a review of the attack rates and available data on the efficacy of face masks. J Travel Med. 2020.10.1093/jtm/taaa178. https://www.ncbi.nlm.nih.gov/pubmed/32975554external icon.
Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. JAMA. 2020.10.1001/jama.2020.12897. https://www.ncbi.nlm.nih.gov/pubmed/32663246external icon.
Mitze T., Kosfeld R., Rode J., Wälde K. Face Masks Considerably Reduce COVID-19 Cases in Germany: A Synthetic Control Method Approach. IZA – Institute of Labor Economics (Germany);2020.ISSN: 2365-9793, DP No. 13319. http://ftp.iza.org/dp13319.pdfpdf iconexternal icon
Gallaway MS, Rigler J, Robinson S, et al. Trends in COVID-19 Incidence After Implementation of Mitigation Measures – Arizona, January 22-August 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(40):1460-1463.10.15585/mmwr.mm6940e3. https://www.ncbi.nlm.nih.gov/pubmed/33031366external icon.
Lyu W, Wehby GL. Community Use Of Face Masks And COVID-19: Evidence From A Natural Experiment Of State Mandates In The US. Health Aff (Millwood). 2020;39(8):1419-1425.10.1377/hlthaff.2020.00818. https://www.ncbi.nlm.nih.gov/pubmed/32543923external icon.
Hatzius J, Struyven D, Rosenberg I. Face Masks and GDP. Goldman Sachs Research https://www.goldmansachs.com/insights/pages/face-masks-and-gdp.htmlexternal icon. Accessed July 8, 2020.
Karaivanov A., Lu S.E., Shigeoka H., Chen C., Pamplona S. Face Masks, Public Policies And Slowing The Spread Of Covid-19: Evidence from Canada National Bureau Of Economic Research 2020.Working Paper 27891. http://www.nber.org/papers/w27891external icon.
Chernozhukov V, Kasahara H, Schrimpf P. Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S. medRxiv. 2020.10.1101/2020.05.27.20115139. http://medrxiv.org/content/early/2020/05/29/2020.05.27.20115139.abstractexternal icon.
Leffler CT, Ing EB, Lykins JD, Hogan MC, McKeown CA, Grzybowski A. Association of country-wide coronavirus mortality with demographics, testing, lockdowns, and public wearing of masks (updated August 4, 2020). medRxiv. 2020.10.1101/2020.05.22.20109231. http://medrxiv.org/content/early/2020/05/25/2020.05.22.20109231.abstractexternal icon.
 
Okay. So you know how numbers work, and we are dealing with a large amount of people. Basically no impact on a small scale becomes an issue when we are talking about millions of people. Even if masks only prevented 1% of cases, we would be talking about almost 600,000 cases.

And 600k cases amounts to 600 deaths (at its highest) and all people who are immune compromised.

This is all about cost benefit and the damage we are doing to our world economically/socially/mentally is far worse.
 
And 600k cases amounts to 600 deaths (at its highest) and all people who are immune compromised.

This is all about cost benefit and the damage we are doing to our world economically/socially/mentally is far worse.

the point is to save lives without imposing enormous costs on society

wearing a mask is about as cheap an intervention as there is
 
the point is to save lives without imposing enormous costs on society

wearing a mask is about as cheap an intervention as there is

You think it’s about just wearing a mask but there are significant downstream impacts psychologically and economically.
 
the point is to save lives without imposing enormous costs on society

wearing a mask is about as cheap an intervention as there is

Is the suggestion that masks have prevented substantially more deaths? Or that the entire world just sucks at wearing them?
 
And 600k cases amounts to 600 deaths (at its highest) and all people who are immune compromised.

This is all about cost benefit and the damage we are doing to our world economically/socially/mentally is far worse.

I threw out an extremely low number, but yeah...even 600 people are worth the inconvenience of wearing a mask for a few minutes (most people) per day or at worst for several hours per day when working.
 
Is the suggestion that masks have prevented substantially more deaths? Or that the entire world just sucks at wearing them?

People really do suck at wearing them. lol It is bizarre. I would say 70% of people who wear masks where I work wear them incorrectly (usually that means their nose is exposed).
 
I do find it uplifting and promising that people who never did suddenly care about the psychological toll on people. I hope that continues. Definitely one of the positives that could come out of this.
 
What!? I provided a list of peer-reviewed studies to support my claims.

And we now have the most recent wide ranging study which shows little to no impact.

But what we have seen is drastic increases in suicide (and much higher in attempts or thoughts), domestic abuse and lack of learning. We are also teaching our young children to stay away from iky people with germs. Masks also prevent people from contributing to the world economy which has thrusted hundreds of millions into poverty.


I’m sorry death is a part of life. My mother died from cancer when I was 8. Life sucks.
 
If masks are 10% effective on a 2% prevelance, that is absolutely not worth the cost of mandating it nationally for all of the other negative consequences.

And thats before we even consider that people don't wear them correctly anyways so the effectiveness gets even lower
 
And we now have the most recent wide ranging study which shows little to no impact.

But what we have seen is drastic increases in suicide (and much higher in attempts or thoughts), domestic abuse and lack of learning. We are also teaching our young children to stay away from iky people with germs. Masks also prevent people from contributing to the world economy which has thrusted hundreds of millions into poverty.


I’m sorry death is a part of life. My mother died from cancer when I was 8. Life sucks.

Death is absolutely a part of life. Tomorrow makes 1 year since I lost my best friend to cancer (at 34). That does not mean we should roll over and not try to give everyone the best chance possible at a long healthy and happy life.
 
Back
Top